CHEMBIOCHEM

Supporting Information

© Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2008

© Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2008

CHEMBIOCHEM

Supporting Information

for

Hydrogen-Bond Detection, Configuration Assignment, and Rotamer Correction of Side-Chain Amides in Large Proteins by NMR through Protium/Deuterium Isotope Effects

Aizhuo Liu,* Jifeng Wang, Zhenwei Lu, Lishan Yao, Yue Li, and Honggao Yan*

Figure S1. Pulse sequence scheme of 3D NOESY-[¹⁵N,¹H]-IS-TROSY experiment for the simultaneous NOE observation for both backbone and side chain amides of proteins in the mixture solvent of 50%H₂O/50%D₂O. Unlike existing 3D NOESY-[¹⁵N, ¹H]-TROSY experiments which exclusively detect NOEs with backbone amides, an isotopomer-selective (IS)- TROSY instead of normal TROSY element is used in the new experiment. Narrow and broad black bars indicate 90 $^{\circ}$ pulses and 180 $^{\circ}$ pulses, respectively, in either 1 H frequency channel with 24.3 kHz power or $15N$ channel with 5.0 kHz power. Small black shapes in $1H$ channel are 90° water-flip-back pulses having a 1.5 ms pulse length with the shape of the central lobe of Sinc function and maximum power level of 283 Hz. The shaped 180 $^{\circ}$ pulse in gray of 13 C channel is an adiabatic Chirp pulse with 500 µs width and maximum power of 9.8 kHz. Deuterium decoupling scheme is the WALTZ-16 sequence with phase *x* and flanked with a 90° pulse with phase *y* in front and a 90° pulse with phase –*y* behind at the power level of 1.4 kHz. The offsets in different channels were set at 4.82, 118, 115 and 7.3 ppm for 1 H, 15 N, 13 C and 2 H, respectively, with DSS as inner reference at 25 °C. The delay *t* was set to 2.7 ms. Phase cycling scheme was: $f_1 = x$; $f_2 = 4(x)$, $4(-x)$; $f = (y, -y, -x, x)$; $f = -y$; $f_5 = -x$; $f = -f$; $f = -f$; receiver $f(t_3) = (x_1, -x_2, -y_1, y_2, -x_1, x_2, y_1, -y)$. Unless specifically indicated, the phase of the pulse was x. TPPI for the t_1 dimension was achieved through f_1 with each t_1 increment and for the t_2 dimension by inverting f_3 and receiver $f(t_3)$ with each t_2 increment. For each value of t_2 , quadrature detection was achieved by acquiring two FIDs and stored separately with pulse phases $f = (-y, y, -x, x)$; $f = y$; $f = x$ for the second FID. The length of the *z*-axis pulsed field gradients was set to 1 ms with following strengths: *g*1 (42 G/cm), *g*2 (18 G/cm), *g*3 (48 G/cm), q_4 (27 G/cm) and q_5 (30 G/cm) with the sine profile. The gradient q_3 is optional, but necessary for NMR samples in this study in order to further suppress the strong signals from the unlabeled ligand.

Figure S2. A) ¹⁵N-coupled 2D ¹⁵N,¹H HSQC spectrum of yCD for the measurement of ¹J_{NH} coupling constants in side-chain amides. 1.5 mM (protomer concentration) u-²H/¹³C/¹⁵N-labeled NMR sample was solved in 75% $H₂O/25% D₂O$ under buffer conditions the same as other preparations. The spectrum was recorded on a Bruker AVANCE 900 MHz NMR spectrometer equipped with a TCI cryoprobe at 25 °C. Each pair of resonances for a side-chain amide is linked by a horizontal line. The protonated doublet in each "quartet" is at $15N$ downfield and the semideuterated doublet upfield. The one-bond $^1J_{\text{NHE(DZ)}}(^1J_{\text{NHZDE}})$ scalar coupling is measured from the splitting of the semideuterated doublet and shown as ppb in the 1 H dimension. The region enclosed with dashed lines is enlarged and shown in B). The spectrum was recorded with 32 scans and a 2.0 s delay time, $t_{\text{1max}}({}^{15}N) = 66$ ms and $t_{\text{2max}}({}^{1}H^N) =$ 285 ms, resulting in the experimental time of 4.2 h. Before Fourier transformation, the raw data were zero filled resulting in a 1.0 Hz digital resolution in 1 H dimension and 1.5 Hz in ${}^{15}N$ diemnsion. Repeated measurements essentially led to the same result.