CHEMBIOCHEM

Supporting Information

© Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2008

© Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2008

CHEMBIOCHEM

Supporting Information

for

Hydrogen-Bond Detection, Configuration Assignment, and Rotamer Correction of Side-Chain Amides in Large Proteins by NMR through Protium/Deuterium Isotope Effects

Aizhuo Liu,* Jifeng Wang, Zhenwei Lu, Lishan Yao, Yue Li, and Honggao Yan*

Figure S1. Pulse sequence scheme of 3D NOESY-[¹⁵N,¹H]-IS-TROSY experiment for the simultaneous NOE observation for both backbone and side chain amides of proteins in the mixture solvent of 50%H₂O/50%D₂O. Unlike existing 3D NOESY-[¹⁵N, ¹H]-TROSY experiments which exclusively detect NOEs with backbone amides, an isotopomer-selective (IS)-TROSY instead of normal TROSY element is used in the new experiment. Narrow and broad black bars indicate 90° pulses and 180° pulses, respectively, in either ¹H frequency channel with 24.3 kHz power or ¹⁵N channel with 5.0 kHz power. Small black shapes in ¹H channel are 90° water-flip-back pulses having a 1.5 ms pulse length with the shape of the central lobe of Sinc function and maximum power level of 283 Hz. The shaped 180° pulse in gray of ¹³C channel is an adiabatic Chirp pulse with 500 µs width and maximum power of 9.8 kHz. Deuterium decoupling scheme is the WALTZ-16 sequence with phase x and flanked with a 90° pulse with phase y in front and a 90° pulse with phase -y behind at the power level of 1.4 kHz. The offsets in different channels were set at 4.82, 118, 115 and 7.3 ppm for ¹H, ¹⁵N, ¹³C and ²H, respectively, with DSS as inner reference at 25 °C. The delay t was set to 2.7 ms. Phase cycling scheme was: $f_1 = x$; $f_2 = 4(x)$, 4(-x); f = (y, -y, -x, x); f = -y; $f_5 = -x$; f = -f; f = -f; receiver $f(t_3) = (x, -x, -y, y, -x, x, y, -y)$. Unless specifically indicated, the phase of the pulse was x. TPPI for the t_1 dimension was achieved through f_1 with each t_1 increment and for the t_2 dimension by inverting f_3 and receiver $f(t_3)$ with each t_2 increment. For each value of t_2 , quadrature detection was achieved by acquiring two FIDs and stored separately with pulse phases f = (-y, y, -x, x); f = y; f = x for the second FID. The length of the z-axis pulsed field gradients was set to 1 ms with following strengths: q_1 (42 G/cm), q_2 (18 G/cm), q_3 (48 G/cm), g_4 (27 G/cm) and g_5 (30 G/cm) with the sine profile. The gradient g_3 is optional, but necessary for NMR samples in this study in order to further suppress the strong signals from the unlabeled ligand.

Figure S2. A) ¹⁵N-coupled 2D ¹⁵N,¹H HSQC spectrum of yCD for the measurement of ¹J_{NH} coupling constants in side-chain amides. 1.5 mM (protomer concentration) u-²H/¹³C/¹⁵N-labeled NMR sample was solved in 75% H₂O/25% D₂O under buffer conditions the same as other preparations. The spectrum was recorded on a Bruker AVANCE 900 MHz NMR spectrometer equipped with a TCI cryoprobe at 25 °C. Each pair of resonances for a side-chain amide is linked by a horizontal line. The protonated doublet in each "quartet" is at ¹⁵N downfield and the semideuterated doublet upfield. The one-bond ¹J_{NHE[D2]} (¹J_{NHZDE]}) scalar coupling is measured from the splitting of the semideuterated doublet and shown as ppb in the ¹H dimension. The region enclosed with dashed lines is enlarged and shown in B). The spectrum was recorded with 32 scans and a 2.0 s delay time, t_{1max} (¹⁵N) = 66 ms and t_{2max} (¹H^N) = 285 ms, resulting in the experimental time of 4.2 h. Before Fourier transformation, the raw data were zero filled resulting in a 1.0 Hz digital resolution in ¹H dimension and 1.5 Hz in ¹⁵N diemnsion. Repeated measurements essentially led to the same result.